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ABSTRACT  

Communicable diseases including measles, Covid-19 and Ebola virus can be transmitted from one 

community to the other through epidemic dispersal. Different dispersal mechanisms were 

investigated using a verity of mathematical models; however, the effect of dispersal rates on diseases 

transmitting between communities that differ in healthcare provisions has not been previously 

studied. This study, therefore, investigated such effects on the transmission of infectious diseases 

between two distinct patches: a community with (without) better healthcare facilities. The stochastic 

susceptible-infected-susceptible (SIS) model, devised through the continuous-time Markov chain 

(CTMC) process, together with its corresponding ordinary differential equation (ODE) model, was 

used to determine how changes in dispersal rates can affect the transmissions of diseases. To 

supplement the findings of this study, basic reproduction numbers for the two patches were also 

determined. We found that the dispersal rate has profound effects on the transmission of infectious 

diseases since increase in the dispersal rate in one community an increases the disease transmission 

in the other and the opposite is also true. Therefore, the transmission of diseases in not severely 

affected communities can be contained when travel ban is imposed in the worst affected communities. 
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INTRODUCTION 

Access to relevant healthcare, described as an important social determinant of health, is essential in 

preventing many infectious diseases, including sexually transmitted diseases [1]. Studying disease 

transmission, along with problems of healthcare provisions, can provide additional insight into the 

population dynamic of the affected communities. Due to the lack of equity in accessing healthcare 

facilities, death rates from infectious diseases in developing countries exceed those from 

industrialized ones [2]. For example, a delay in containing the transmission of Ebola virus in West 

Africa was linked with high rates of poverty, as well as poor healthcare provisions [3]. Consequently, 

communicable diseases, such as measles, Covid-19 and Ebola virus, can be rapidly transmitted 

between communities with better healthcare facilities and others that lack those facilities. This can 

be possible through a connectivity, which was described as a key driver of epidemic dispersal, among 

those communities [4]. 

Since communicable diseases spread easily from one country to the other, epidemic patch models (5] 

remain the most suitable mathematical tools for describing such scenarios. Many interesting results 

are obtained from these models. For example, the susceptible-infected-recovered (SIR) model 

incorporating dispersal terms reported the transmission of diseases during migration between patches 

[6]. A deterministic susceptible-infected-susceptible (SIS) model suggested that the increase in 

reproduction number in any patches can intensify the spread of the disease therein [7]. The probability 

of disease extinction was estimated through a two-patch continuous-time Markov chain (CTMC) 

model for the transmission of Salmon anaemia virus [8]. 

Epidemic dispersal plays a vital role in understanding how pathogens are spreading among different 

patches, whose inhabitants can be either humans or animals (or both). This dispersal can be as a result 

of many factors, among which are global trades and variation in climatic patterns [9]. Epidemic 

dispersal has been studied using a verity of mathematical models, including classical systems like 

Kermack-Mckendir [10]. Another important model was the logistic growth dispersal, whose time 

component incorporates an inverse power law function [11]. This model, along with empirical data, 

estimates the initial epidemic outbreak, as well as the frequency of susceptible hosts. Due to the 

importance of disease dispersal in epidemiology, the effects of various dispersal mechanisms were 

investigated. For example, using an SIS model, the effects of dispersal on infected individuals was 

studied by examining both the long and short terms behaviour of the dispersal [12]. A verity of 

moment closures was used to study the effect of disease dispersal on epidemic threshold in plants 

[13]. This suggested that the disease transmission can be possible by the dispersal of pathogen. The 

effect of the initial condition of epidemic class on spatio-temporal pattern was examined through 

Cauchy distribution, which reported that the rate at which a disease increases per day can be 

influenced by the median dispersal distance [14]. The effects of the pathogen life cycle were studied, 

through a modified power law, which reported the strong influence of infectious period on epidemic 

dispersal [15]. The performance of different control strategies of foot and mouth epidemic was 

evaluated using the stochastic epidemic dispersal, through which both the history and the duration of 

epidemic were assessed [16]. 
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When investigating the dynamics of epidemics, researchers often devised different mathematical 

models, depending on the problem under study. These include the deterministic and stochastic 

models. While the former deals with the formulations of ordinary differential equations (ODEs) to 

provide exact results [17], the later uses the probability of random events, often constructed through 

CTMC, to approximate the solutions of ODEs [18]. Compartmental models, formulated by ODEs, 

are useful in epidemiology; for example, they estimate epidemic persistence [19], through an 

important threshold called a basic reproduction number [20]. On the other hand, stochastic models 

are hard to be formulated; they are more informative [21]. Important findings in epidemiology, such 

as correlation between infected individuals [23], disease emergence and re-emergence [24] and 

extinction of diseases [20, 26], are reported through the computer simulations of stochastic models. 

Since the literature on modeling of epidemic dispersal involving healthcare facilities is lacking, this 

study combined both deterministic and stochastic approaches to address such a problem. We aim at 

investigating the effects of dispersal rates on diseases transmitting between two patches, whose 

inhabitants differed in healthcare provisions. 

Community one lacks a recovery rate due to poor healthcare services, while the recovery rate is 

included in community two since they enjoy better healthcare facilities. The dynamic of an epidemic 

population due to changes in dispersal rates, together with the reproduction number, is examined 

through the stochastic and deterministic SIS models. We determined the basic reproduction number 

at the disease-free equilibrium using the next generation matrix. The distribution of the epidemic is 

estimated through the computer simulations of CTMC model. 

Materials and Methods 

Continuous Time Markov Chain model 

Suppose that S1(t) and S2(t), each of which interacts with their corresponding infectious group I1(t) 

and I2(t), represent the population of two susceptible individuals inhabiting two different patches at 

time t. While the individuals in patch one lack a speedy recovery due to poor healthcare facilities 

therein, those in patch two enjoying better healthcare facilities are assumed to have some remarkable 

recovery from a spreading pathogen. Therefore, the CTMC of this process can be written as {S1(t), 

I1(t), S2(t), I2(t) : t ≥ 0}, whereby S1(t),I1(t),S2(t) and I2(t) are the state spaces of the process, and t is 

the continuous-time representing the parameter space. 

Given that population counts S1(t), I1(t), S2(t) and I2(t) take values m1,m2,m3 and m4, respectively, we 

write the probability mass function of the process as 

 
where m1 = m2 = m3 = m4 = 0,1,2,3,... 

To derive the mean-field equations, ODE model, capturing the dynamics of the spread of two 

pathogens in the two different patches, we write schematic reactions of the process as follows [27, 

29]: 
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1. The two susceptible groups S1(t) and S2(t) can be infected by the infectious individuals I1(t) and 

I2(t) at the rates β1 and β2 respectively, such that 
 β1 β2 

    S1(t) + I1(t) −→ 2I1(t) and S2(t) + I2(t) −→ 2I2(t). 

2. Due to the provision of better healthcare facilities in patch two, some I2(t) can move to S2(t) 

class when infected at a recovery rate γ, such that 

γ 
I2(t) −→ S2(t). 

3. While susceptible individuals S1(t) can leave their favourable habitat (patch one) to another 

habitat (patch two) at a dispersal rate ρ1, those in patch two can move to patch one at the rate 

ρ2. These can be expressed as 

 ρ1 ρ2 
S1(t) −→ S2(t) and S2(t) −→ S1(t). 

4. The infectious individuals inhabiting patch one I1(t) can move to patch two at ρ1. Meanwhile, 

those infected in patch two can leave for patch one at the dispersal rate ρ2. We present these as 

follows 
 ρ1 ρ2 

I1(t) −→ I2(t) and I2(t) −→ I1(t). 

Considering all the events happening between the time interval (t,t + ∆t) (where ∆t is an infinitesimal 

time), we write their transition rates, along with the corresponding changes, as follows. 
 

Table 1: Transition rates for CTMC model of S1I1S2I2 with dispersal 
Event Transition between t and t + ∆t Probability 
i) S1(t) is infected by I1(t) (m1 + 1,m2− 1,m3,m4) → (m1,m2,m3,m4) β1(m1 + 1)(m2− 1)∆t + 0(∆t)2 
ii) S2(t) is infected by I2(t) (m1,m2,m3 + 1,m4− 1) → (m1,m2,m3,m4) β2(m3 + 1)(m4− 1)∆t + 0(∆t)2 
iii) I2(t) lost (m1,m2,m3,m4 + 1) → (m1,m2,m3,m4) γ(m4 + 1)∆t + 0(∆t)2 
iv) S2(t) recovered (m1,m2,m3− 1,m4) → (m1,m2,m3,m4) γ(m3− 1)∆t + 0(∆t)2 
v) S1(t) leaves patch one (m1 + 1,m2,m3,m4) → (m1,m2,m3,m4) ρ1(m1 + 1)∆t + 0(∆t)2 
vi) S1(t) appears in patch two (m1,m2,m3− 1,m4) → (m1,m2,m3,m4) ρ1(m3− 1)∆t + 0(∆t)2 
vii) S2(t) leaves patch two (m1,m2,m3 + 1,m4) → (m1,m2,m3,m4) ρ2(m3 + 1)∆t + 0(∆t)2 
viii) S2(t) appears in patch one (m1− 1,m2,m3,m4) → (m1,m2,m3,m4) ρ2(m1− 1)∆t + 0(∆t)2 
ix) I1(t) leaves patch one (m1,m2 + 1,m3,m4) → (m1,m2,m3,m4) ρ1(m2 + 1)∆t + 0(∆t)2 
x) I1(t) appears in patch two (m1,m2,m3,m4− 1) → (m1,m2,m3,m4) ρ1(m4− 1)∆t + 0(∆t)2 
xi) I2(t) leaves patch two (m1,m2,m3,m4 + 1) → (m1,m2,m3,m4) ρ2(m4 + 1)∆t + 0(∆t)2 
xii) I2(t) appears in patch one (m1,m2− 1,m3,m4) → (m1,m2,m3,m4) ρ2(m2− 1)∆t + 0(∆t)2 

When substituting the probabilities given in Table 1 into Equation (1) and taking the limit as the 

results approaches infinity, we obtain the following master equation [28] 

 

+ ρ1m1 + ρ2m3 + ρ2m3 + ρ2m1 + ρ1m2 + ρ1m4 + ρ2m4 + ρ2m2) 

+ p(m1 + 1,m2 − 1,m3,m4;t)β1(m1 + 1)(m2 − 1) 

+ p(m1,m2,m3 + 1,m4 − 1;t)β2(m3 + 1)(m4 − 1) 

+ p(m1,m2,m3,m4 + 1;t)γ(m4 + 1) + p(m1,m2,m3 − 1,m4;t)γ(m3 − 1) 

+ p(m1 + 1,m2,m3,m4;t)ρ1(m1 + 1) + p(m1,m2,m3 − 1,m4;t)ρ1(m3 − 1) 
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+ p(m1,m2,m3 + 1,m4;t)ρ2(m3 + 1) + p(m1 − 1,m2,m3,m4;t)ρ2(m1 − 1) 

+ p(m1,m2 + 1,m3,m4;t)ρ1(m2 + 1) + p(m1,m2,m3,m4 − 1;t)ρ1(m4 − 1) 

+ p(m1,m2,m3,m4 + 1;t)ρ2(m4 + 1) + p(m1,m2 − 1,m3,m4;t)ρ2(m2 − 1) (2) 

Equation (2) can be simplified using the following probability generating function [21,22], 

 
Taking the derivative of Equation (3) with respect to t, we get 

 

Substituting Equation (2) into (4) and simplifying the result therein, we get the following equation 

[38] 

(5) 

The moment generating function defined by M(ω1,ω2,ω3,ω4;t) = F(eω1,eω2,eω3,eω4;t) [30] can be 

used to simplify Equation (5) as follows 

      (6) 

Using the notation 4 [38],  
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we calculate  from Equation (6) and present the results as follows: 
𝑑𝔼(𝑧1(𝑡))

𝑑𝑡
= −𝛽1𝔼(𝑧1(𝑡)𝑧2(𝑡)) − 𝜌1𝔼(𝑧1(𝑡)) +  𝜌2𝔼(𝑧1(𝑡))      (7a) 

𝑑𝔼(𝑧2(𝑡))

𝑑𝑡
= 𝛽1𝔼(𝑧1(𝑡)𝑧2(𝑡)) +  𝜌2𝔼(𝑧2(𝑡)) + 𝜌1𝔼(𝑧2(𝑡))    (7b) 

𝑑𝔼(𝑧3(𝑡))

𝑑𝑡
= −𝛽2𝔼(𝑧3(𝑡)𝑧4(𝑡)) − 𝛾𝔼(𝑧3(𝑡)) − 𝜌2𝔼(𝑧3(𝑡)) + 𝜌1𝔼(𝑧3(𝑡))  (7c) 

𝑑𝔼(𝑧4(𝑡))

𝑑𝑡
= 𝛽2𝔼(𝑧3(𝑡)𝑧4(𝑡)) − 𝛾𝔼(𝑧4(𝑡)) − 𝜌2𝔼(𝑧4(𝑡)) + 𝜌1𝔼(𝑧4(𝑡))   (7d) 

Considering condition (2) stated in the schematic reactions, we assume that γ E(Z3(t)) ≈ γ E(Z4(t)) in 

Equation (7c). Other assumptions can be made from condition (3) as ρ2 E(Z1(t)) ≈ ρ2 E(Z3(t)) in 

Equation (7a), and ρ1 E(Z3(t)) ≈ ρ1 E(Z1(t)) in Equation (7c). Meanwhile, condition (4) assumes that 

ρ2 E(Z2(t)) ≈ ρ2 E(Z4(t)) in Equation (7b), and ρ1 E(Z4(t)) ≈ ρ1 E(Z2(t)) in Equation (7d). Applying these 

changes on Equations (7a,7b,7c and 7d), we write    

  (8) 

A heuristic approach allows us to write these equations as follows 

  (9) 

Equation (9), the system of ODEs, represents the SIS compartments of two different infectious groups 

spreading pathogens in their corresponding susceptible populations, inhabiting two different patches. 

While the individuals in patch one do not recover (on time) after contracting the disease, those in 

patch two would remarkably recover due to the availability of better healthcare facilities therein. The 

model Equation (9), whose all parameters are assumed to be positive, did not capture the birth of new 

individuals, as well as their natural mortality. 

Basic Reproduction Number, R0 

The basic reproduction number, denoted by the symbol Ro, can be used to measure the spread of 

disease in a given population [19]. If Ro < 1, few infected individuals interacts with the susceptible 

community, through which the epidemic would fail to spread. Meanwhile, if Ro > 1 increases the 

number of infected individuals. This is an indication that the disease would spread rapidly [36]. 
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Playing vital roles in understanding many epidemiological problems such as disease outbreaks [34] 

and extinctions [33], the basic reproduction number can be estimated through different mathematical 

formulations [32]. Thus, in this study, Ro is determined by linearising the system of ODEs Equation 

(9) about disease-free equilibrium [37]. Two matrices F, containing all rates of secondary infections, 

and V, whose elements are recovery and transfer rates, are estimated from the disease compartments 

of the ODEs as follows: 𝐹 = [
𝛽1 0
0 𝛽2

] and 𝑉 = [
𝜌1 −𝜌2

−𝜌1 𝛾 + 𝜌2
]. 

Following the determination of the spectral radius ρ(K) = FV −1, through the computation of the 

eigenvalues of the product FV −1, we get the two basic reproduction numbers of the system Equation 

(9) as follows: 

 (10) 

and 

, (11) 

whereby .  

One should note that R01 is the basic reproduction number of a community with poor healthcare 

facilities, while that of a community enjoying better healthcare facilities is given as R02. 

It can be easily shown that η > 0 for all β1,β2,γ,ρ1,ρ2 ≥ 0. Thus, from Equations (10) and (11) Ro2 < 

Ro1. This signifies that the introduction of a recovery term, in a community with better healthcare 

facilities, would suppress a pathogen spreading therein. 

RESULTS AND DISCUSSION 

Numerical Examples 

In order to determine the effects of dispersal rates on the populations of two infectious classes I1(t) 

and I1(t), inhabiting two different patches, two mathematical approaches, CTMC and ODE models, 

are implemented. The ODE model Equation (9) can be simply solved numerically through the 

MATLAB ODE solver, ode45. Meanwhile, since the master equation (2) can be difficult to solve, 

the Gillespie algorithm [35] is employed to numerically solve the formulation of CTMC. This method 

uses two random numbers, r1 and r2, generated from the uniform distribution. While r1 estimates the 

inter-event time, r2 updates the continuous-time in the process [38]. For example, if the probability 

of any events of interest is less than r1, the population count of this event is to be increased by one. 

This process continuous until all the listed events are exhausted. The time would be updated 

accordingly. 

The effects of epidemic dispersal can be determined by holding other parameters of the model, β1, β2 

and γ, constant and varying the values of dispersal rates ρ1 and ρ2. This allows us to examine the 

changes in the population of infectious classes, through stochastic realisations and trajectories of the 

solution of ODE model Equation (9). For example, when the values of two dispersal rates are the 
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same (ρ1 = ρ2 = 0.05), the difference in the population sizes of the infectious classes I1(t) and I2(t) is 

only due to the disparity in their transmission rates, as well as the recovery rate included in the 

compartment of I2(t) (see Figure 1). When considering the population of susceptible individuals, we 

found that S1(t) < S2(t), while the difference in the two basic reproduction numbers was found to be 

R02 < R01 (Figure 1). 

 

Time 

Figure 1: When the values of dispersal rates are the same ρ1 = ρ2, the change in population counts of 

the two infectious classes I1(t) and I2(t) is only due to differences in transmission and recovery rates. 

Both the solution of ODE and Gillespie realisation are estimated at β1 = 0.04, β2 = 0.02, γ = 1, ρ1 = ρ2 

= 0.05, S1(0) = 500, S2(0) = 499, I1(0) = 1, I2(0) = 1, R01 = 0.8410 and R02 = 0.0190. 

When the dispersal rate of the infectious class I1(t) is more than that of I2(t) (ρ1 = 0.3, ρ2 = 0.03), the 

population size of I2(t) increases (see Figure 2). We found that S1(t) < S2(t), and R02 < R01 (Figure 2). 

One should note that other parameters of the model are also kept constant, as reported previously. 

 

Figure 2: When ρ1 > ρ2, the population count of I2(t) increases. One Gillespie realization, along 

with the solution of corresponding ODEs, is estimated at β1 = 0.04, β2 = 0.02, γ = 1 ρ1 = 0.3, ρ2 = 

0.03, S1(0) = 500, S2(0) = 499, I1(0) = 1, I2(0) = 1, R01 = 0.1380 and R02 = 0.0193. 
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Moreover, the transmission rates β1 and β2, together with the recovery rate γ, are still kept constant. 

However, the dispersal rates are varied to determine the difference in the population counts of the 

two infectious classes, I1(t) and I2(t). This technique is similar to that of the previous result. When ρ2 

> ρ1 (ρ1 = 0.05,ρ2 = 0.5), the population of the infectious class I1(t) increases (see Figure (3)). We also 

found that the population count of susceptible class S2(t) is greater than that of S1(t), while the basic 

reproduction R02 is still less than R01. 

 

Figure 3: When ρ2 > ρ1, the population count of I1(t) increases. One Gillespie realization 

approximates the solution of the corresponding ODEs for β1 = 0.04, β2 = 0.02, γ = 1 ρ1 = 0.05, ρ2 = 

0.5, S1(0) = 500, S2(0) = 499, I1(0) = 1, I2(0) = 1, R01 = 1.2067 and R02 = 0.0133. 

Since Figures 1, 2 and 3 report the differences in population sizes of infectious classes I1(t) and I2(t) 

through one realisation of Gillespie algorithm, these differences are further investigated by 

performing 1000 simulations. Maintaining values of transmission and recovery rates, as well as the 

initial number of population sizes, similar to those reported in the previous results, the distributions 

of I1(t) and I2(t) are estimated at t = 2 (Figure 2). When ρ1 = ρ2 = 0.05, the mean and variance of I1(t) 

are slightly more than those obtained in I2(t) (Figure 4 (a),(b)). Varying the values of the dispersal 

rates to ρ1 > ρ2 (ρ1 = 0.3,ρ2 = 0.03), the mean and variance of I2(t) grow higher (see Figure 4 (c),(d)). 

However, when the dispersal rates are changed to ρ2 > ρ1 (ρ1 = 0.05,ρ2 = 0.5), the mean and the 

variance of infectious class I1(t) increase rapidly (Figure 4 (e),(f)). 
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 Population count Population count 
Figure 4: Increase in the dispersal rate in one patch increases the number of infectious individuals in 

the other. The distributions of population counts for I1(t) and I2(t) are estimated through 1000 

Gillespie realisations (sample paths) at t = 2. (a) and (b) are obtained using the parameters of Figure 

1, (b) and (c) are estimated by the parameters of Figure 2, and (d) and (e) are approximated through 

thJe parameters of Figure 3. (a) and (b) are respectively the distributions of I1(t) and I2(t) for ρ1 = ρ2 ; 

(c) and (d) are respectively the distributions of I1(t) and I2(t) for ρ1 > ρ2; (e) and (f) are respectively 

the distributions of I1(t) and I2(t) for ρ2 > ρ1 . While the mean and variance of I1(t) in (a) are µ = 499.96 

and σ2 = 593.57, those of I2(t) in (b) are µ = 450.00 and σ2 = 347.00, respectively. The mean and 

variance of I1(t) in (c) are µ = 316.52 and σ2 = 1.96 × 103 whereas those of I2(t) in (d) are µ = 616.91 

and σ2 = 7.15×103, respectively. The mean and variance of I1(t) in (e) are µ = 801.78 and σ2 = 3.41 × 

104 while those of I2(t) in (f) are µ = 108.54 and σ2 = 899.78, respectively. 

The effects of dispersal rates on the population of individuals inhabiting two patches, differed in 

healthcare provisions, are studied through the stochastic SIS model, along with its deterministic 

counterpart. It was assumed that community one do not recover (on time) to the spreading disease 

due to poor healthcare facilities. Meanwhile, the provision of better healthcare facilities in community 

two conferred recovery to the individuals therein. Our finding suggests that the CTMC model, 

devised through the computer simulation of Gillespie method, approximates the compartmental ODE 

model Equation (9). This was true in all the results reported in this study despite the fact that the 

dispersal rates were varied when examining their effects on the population of infected individuals 

(see Figures 1,2 and 3). Other studies [24, 18, 34], dealt with different scenarios, also reported similar 

to this finding. 

Through the dynamics of epidemic dispersal in two different communities are considered in the same 

system, the study suggests that the disease can be easily contained in the community with better 

healthcare facilities compared to the other that lacks those facilities. This was reported through the 

comparison of basic reproduction numbers for the population of two different communities (see 

Figures 1,2 and 3). This finding, properly described by our model, is expected since the recovery rate 

was included in the community with better healthcare provisions. 
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The effects of dispersal rates on disease transmission are studied by comparing the number of infected 

individuals in the two communities. The finding of this study suggests that increase in the dispersal 

rate in one community increases the population of infected individuals in the other. Also, decrease in 

dispersal rate in one community decreases the number of infected individuals in the other community 

(Figures 2,3 and 4). This is possible since the transmission of infectious diseases, through 

transportation, was reported in many studies [13, 6]. It is clear that a disease transmission does not 

only depend on transmission rates, but also on the dispersal rates. Incorporated in the model, dispersal 

rates have profound effects on the population counts of infectious classes. Thus, this study suggests 

that the transmission of infectious diseases, to other communities, would be easily contained if the 

rate of movement of individuals in the affected communities is reduced. 

CONCLUSION 

This study suggests that the dispersal rates have profound effects on the transmission of infectious 

diseases between two different communities. Therefore, the spread of diseases can be easily contained 

by restricting the movement of individuals, through imposing travel ban and other related measures, 

to not seriously affected communities. Since it takes a longer time to apply other control measures, 

such as vaccination strategies, in containing transmissions of most epidemic diseases, this study, 

conducted using modelling approach, gives additional insight into the existing problem. Though the 

mathematical derivations, as well the computer simulations, considered only two patches, this can be 

extended to three or more depending on a problem needs to be addressed. Further studies, including 

the evaluation of different control strategies and the computation of probability of epidemic 

extinctions, can be conducted on spatial epidemic dispersal modelling. 
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